
ESL Adoption at Freescale 
Semiconductor’s Wireless Operations

Ryan Bedwell
System Level Design Manager, Modem Products Division

Ver 2



Why ESL?

• Increasing Design Complexity
� “Architecture by intuition ” becoming very difficult
� Must be able to explore tradeoffs quickly
� Time-to-market pressures further compress schedule
� Need verification re-use between architecture & design
� Industry is poised to adopt techniques for more abstract design
� The cost of mistakes (time & money) is growing

• Increasing Importance of Software
� Customers require platform delivery rather than “bag of IC’s”
� Software effort is very significant for smart consumer devices
� Market demand requires:

> Pre-silicon Software development & testing
> Software/hardware integration much earlier than previously done
> Software development models capable of many MIPS operation



ESL-Based Modeling Flow

Architecture IP Design Integration Fab Platform IntegrationConcept

Fast Virtual Platform/System

Performance Models

Implementation Verification (RTL Simulator/Emulator /FPGA/Mixed)

Hardware Validation

Test & Application Software

Detailed Performance Analysis Model

General Software Development

Firmware/ROM Development

Software Profiling & Optimization

“Double-blind 
(HW/SW) Bringup”

Architectural Verification

Used to aid in verification of TLM models, RTL implementation, and silicon

Co-Verification

V
erify V

erify

Executable Spec

V
er

ify



Key “Pressure Points” Addressed by ESL

Start software development 
earlier using fast TLM models; 
deliver platform at first silicon

Fewer late-in-cycle design changes 
due to earlier/better system-level 
verification

Explore many architectures & 
arrive at correct one earlier

Reduce inconsistencies through use of 
“executable spec” and shared verification 

environments

→Mask costs
→Opportunity costs

COST RISK SCHEDULE



“Internal” Implications …

… On Architects:
• Create & use system-level models for architectural decisions
• Work with designers on common executable spec and verification environment
• Require system-level models in external IP deliverables

… On IC Designers:
• Work on common verification environments between RTL & system-level models
• Keep abreast of developments in behavioral synthesis tools
• Prepare for eventual paradigm shifts to higher abstraction in design methodologies

… On Software Developers:
• Require “virtual system” delivery from system teams
• Use available models for pre-silicon software development
• Drive new features in models for enhanced debug & visibility capabilities

… On Management:
• Evaluate & recognize the value of system-level modeling; fully fund and staff the effort
• Require measurable benefits



“External” Implications …
… On IP Vendors:

• Make TLMs a part of standard IP delivery (at least 2 views: untimed & cycle-accurate)
• Support open APIs and standards; remain agnostic to tool vendors
• Support – and participate in – standardization efforts

… On EDA Vendors:
• Support open APIs (bus, debug, profiling, …); we cannot be locked into a specific vendor!
• Find product differentiators that work in the context of open standards, such as:

• Fast, accurate processor core and standard IP (i.e. bus) models
• Seamless integration with standard software development tools
• HDL co-simulation and co-emulation tools
• Speed enhancements

… On the SystemC™ Community:

• SystemC™ is excellent, but not enough…
• Build on TLM spec; push standards to higher levels:

• Bus convenience APIs (specific buses and/or configurable buses)
• Registers
• Debug (non-disturbing) accesses
• Profiling and measurement

• Constant attention to speed/accuracy tradeoff



Critical Success Factors

• Expand ESL efforts beyond in-house/proprietary projects
� Use and drive standards for languages, APIs, abstraction levels, etc.
� Staff effort appropriately with architects, IC designers & software engineers

• Provide fast virtual platforms of entire systems
� Beyond SoC… beyond PCB… include “end-to-end” system
� Untimed model performance ≥ 10 MIPS per host processor GHz

• Users drive & adopt industry standards
� APIs – buses, registers, etc.
� Abstraction levels – untimed functional, cycle-approximate, cycle-accurate, …
� Compatibility across tools vendors!

• Link with IC design flows
� “Executable specs”
� Shared verification benches
� Behavioral synthesis…


