
The TLM 2.0 Mixed Endianness
Example

James Aldis

Texas Instruments France

January 2008

Modification of “lt” Example

� Demonstrates the use of TLM endianness-conversion f unctions

� Illustrates data and address modification effects o f BIG- and LITTLE-
endian initiators sharing a memory

� Allows interactive experimentation

� Interactively execute “instructions” alternately on two initiators
– one big- and one little-endian

– store data from BE and view it from LE or vice-versa

– store 32-bit data and view as 8-bit or 16-bit, etc

Platform Structure

tlm_initiator_socket tlm_target_socket

Router (SimpleBusLT)

Memory 1
(at_target_1_phase)

BE Generator 101
(initiator_top)

LE Generator 102
(initiator_top)

Memory 2
(at_target_4_phase)

32 bit
32 bit

32 bit
32 bit

How to run this example (Linux)

� Set SYSTEMC_HOME

� cd examples/tlm/lt_mixed_endian/build-unix

� make

� make run (uses default input)

� ./lt.exe (interactive input)

How to run this example (MSVC)

� Open a explorer window on
examples/tlm/lt_mixed_endian/build-windows

� Launch lt.sln

� Select ‘Property Manager’ from the ‘View ’ menu

� Under ‘lt_extension_mandatory > Debug | Win32’ select
‘systemc’

� Select ‘Properties’ from the ‘View ’ menu

� Select ‘User Macros’ under ‘Common Properties’

� Update the ‘SYSTEMC’ entry and apply

� Select ‘Debugging’ under ‘Configuration Properties’

� Click in the ‘Command Arguments’ box and type in
‘< ..\results\input.txt’

Component details

� Generator 101
– 32-bit Big-endian initiator
– stdin provides instructions to execute (loads and st ores)
– stdin provides data for stores
– data from loads written to stdout

� Generator 102
– Identical but Little-endian

� Instruction Set for both Generators
– l8, l16, l32 (load byte, halfword or word)
– s8, s16, s32 (store byte, halfword or word)
– w (switch control to other generator)
– q (quit)
– see examples/tlm/lt_mixed_endian/results/input.txt for example

instructions

� Bus and Memory
– Exactly as in lt example
– Some kind of 32-bit routing and memory system

The System Being Modelled

� Both memories are simple arrays
of 4-byte words

� Neither the memories nor the
interconnect is aware of the
endianness of the transactions

� Neither the memories nor the
interconnect does any data
modification:
– what the initiators put on the bus

goes unchanged to the memory

� Memories are endianness-neutral
– provide a consistent memory image

to BE and to LE initiators
– “What I write, I read back the same”
– there are no attributes on the

hardware bus except those shown
opposite

32-bit Memory
Component

1024 Words / 4 kByte

10-bit
address

n_we

32-bit
data in

32-bit
data out

n_ce

4-bit byte
enable

The System Being Modelled

� “What the other writes, I may
read back at a different
address”

� Example 1: single byte access

– BE initiator writes byte A5 to
address 66 = 64 + 2
� see opposite for hardware

bus signals

– LE initiator will find it at
address 65 = 64 + 1
� see opposite for hardware

bus signals

0 0 1 0xx xx A5 xx0 00 10

byte enabledata inaddress

bit index: 8 4 0 24 16 8 0 3 0

0 0 1 0xx xx A5 xx0 00 10

byte enabledata outaddress

bit index: 8 4 0 24 16 8 0 3 0

Address bus takes the index of the
correct 32-bit word (66/4 = 16).
Fractional part of the address (2) used
inside initiator to select a byte lane
according to big-endian convention
(more significant bits are at lower
addresses)

Little-endian convention is that more
significant bits are at higher
addresses. To get the same data,
fractional part of the address is 1

The System Being Modelled

� “What the other writes, I may read
back at a different address”

� Same effect for aligned 16-bit or
32-bit data

– But no address change for 32-bit

� Example 2: 32-bit integer access

– BE initiator writes 32-bit integer
04030201 to address 256
� see opposite for hardware bus

signals

– LE initiator will find the same data
at the same address
� see opposite for hardware bus

signals

1 1 1 104 03 02 010 00 40

byte enabledata inaddress

bit index: 8 4 0 24 16 8 0 3 0

1 1 1 104 03 02 010 00 40

byte enabledata outaddress

bit index: 8 4 0 24 16 8 0 3 0

Address bus takes the index of the
correct 32-bit word (256/4 = 64).
Big-endian convention is that more
significant bits of the integer are at
lower addresses, which are at more
significant bits of the bus data word.

Little-endian convention is that more
significant bits of the integer are at
higher addresses, which are at more
significant bits of the bus data word.
Therefore it is the same as big-endian!

The System Being Modelled

� “What the other writes, I may
read back distorted”

� Example 3: write 4 consecutive
bytes and read back as an
integer
– BE initiator writes bytes 04, 03,

02, 01 to addresses 0, 1, 2, 3
� see opposite for hardware

bus signals
– Both initiators will read the

integer 04030201 at address 0
– LE initiator writes bytes 04, 03,

02, 01 to addresses 0, 1, 2, 3
� see opposite for hardware

bus signals
– Both initiators will read the

integer 01020304 at address 0

1 1 1 104 03 02 010 00 00

byte enabledata inaddress

bit index: 8 4 0 24 16 8 0 3 0

1 1 1 101 02 03 040 00 00

byte enabledata inaddress

bit index: 8 4 0 24 16 8 0 3 0

Big-endian convention is that more
significant bits of the data bus word
are lower addresses.

Little-endian convention is that more
significant bits of the data bus word
are higher addresses.

The TLM Model of the System

� The TLM model correctly models the above data and a ddress distortions
and all other possible ones
– In particular it gets hairy for non-address-aligned transactions

� The address, data array and byte enable array in th e transaction payload
object are
– identical to the internal opcode of the initiator

� if the initiator endianness matches the host CPU end ianness
– modified

� if the initiator endianness is different from the ho st CPU’s

� The internal data storage of the memory models
– is not visible (we are not using DMI in this example)
– But could be a simple memcpy() between the data arr ay in the transaction

payload object and an array of unsigned char in the memory model

� Therefore we can say that
– the TLM 2.0 interfaces are always “host-endian”

� Model is functionally identical on BE and LE host C PUs
– but internal structure (length, address, byte enabl es) of transaction payload

objects will differ

