
Lessons from the Trenches: Migrating Legacy
Verification Environments to UVM™

Tutorial presented by members of the VIP TSC

Anecdotes From Hundreds of UVM
Adopters

John Aynsley
Doulos

Page 2

General Comments

Page 3

 Underestimating the learning curve

 Directed tests versus constrained random verification

 Reuse and OOP expertise

 UVM only gets you so far

Especially managers and self-teachers

OVM to UVM

Page 4

 There exists plenty of guidance on migrating from OVM to UVM

 http://forums.accellera.org > Contributions > UVM > Appnote:

Migrating from OVM to UVM-1.0

 verificationacademy.com/verification-methodology

 http://www.doulos.com/knowhow/sysverilog/uvm/ovm-to-uvm

General Issues with UVM

Page 5

 Certain UVM concepts are not straightforward

 SV/UVM terminology can be a barrier

 The sheer size of the UVM BCL

 Too much choice

 Lack of recommended practice and naming conventions

Studying the documentation is not enough!

Backward compatibility with legacy

Top UVM Time-Wasters

Page 6

 Field macros

 `uvm_do macros

 Deprecated OVM sequence mechanisms

 Confusion over the config db (and the OVM legacy)

Those Evil Field Macros?

Page 7

class basic_transaction extends uvm_sequence_item;

rand bit[7:0] addr, data;

function new (string name = "");

super.new(name);

endfunction: new

`uvm_object_utils_begin(basic_transaction)

`uvm_field_int(addr, UVM_DEFAULT)

`uvm_field_int(data, UVM_BIN | UVM_NOCOPY)

`uvm_object_utils_end

endclass : basic_transaction

Field Macro Flags

Page 8

UVM_DEFAULT

UVM_COPY
UVM_COMPARE
UVM_PRINT
UVM_RECORD
UVM_PACK

UVM_NOCOPY
UVM_NOCOMPARE
UVM_NOPRINT
UVM_NORECORD
UVM_NOPACK

UVM_READONLY

all on

default

need to set explicitly

not configured

Inclusion in operations

Overriding do_compare

Page 9

class bus_xact extends uvm_sequence_item;
...
function bit do_compare(uvm_object rhs, uvm_comparer comparer);

bus_xact t;
bit result = 1;
$cast(t, rhs);

result &= comparer.compare_field("op", op, t.op, $bits(op));
if (op != NOP)

result &= comparer.compare_field("addr", addr, t.addr,
$bits(addr));

...
return result;

endfunction

`uvm_object_utils_begin(bus_xact)
`uvm_field_int(op, UVM_NOCOMPARE)
`uvm_field_int(addr, UVM_NOCOMPARE)
...

`uvm_object_utils_end
endclass

tx1.compare(tx2)

Turn off default comparison

Also uvm_packer, uvm_recorder, ...

Collects mismatches

Field Macros and Overridden Methods

Page 10

begin

bit result = 1;

result &= tx1.field_automation(tx2);

result &= tx1.do_compare(tx2);

output_mismatch_report;

return result;

end

Pseudo-code

UVM_COMPARE

UVM_NOCOMPARE

UVM_REFERENCE

tx1.compare(tx2);

uvm_comparer comparer = new;

comparer.show_max = 999;

tx1.compare(tx2, comparer);

uvm_comparer comparer = new;

comparer.policy = UVM_SHALLOW;

comparer.show_max = 999;

tx1.compare(tx2, comparer);

Stop Faffing Around!

Page 11

class basic_transaction extends uvm_sequence_item;

`uvm_object_utils(basic_transaction)

...

function bit do_compare(uvm_object rhs,
uvm_comparer comparer);

bit result = 1;
basic_transaction tx;
$cast(tx, rhs);

result &= (addr == tx.addr);
result &= (data == tx.data);

return result;
endfunction

endclass : basic_transaction

The Dreaded super.build_phase

Page 12

uvm_config_db#(int)::set(this, "m_env.m_driv", "count", 999);

int count;

`uvm_component_utils_begin(my_component)

`uvm_field_int(count, UVM_DEFAULT)

`uvm_component_utils_end

function void build_phase(uvm_phase phase);

super.build_phase(phase);

endfunction
Calls apply_config_settings

Sets count = 999

The Moderately Evil `uvm_do

Page 13

`uvm_do(req)

req = tx_type::type_id::create("req");

start_item(req);

if(!req.randomize()) `uvm_error(...)

finish_item(req);

Equivalent?

Expanded Invocation of `uvm_do

Page 14

begin

uvm_sequence_base __seq;

begin

uvm_object_wrapper w_;

w_ = SEQ_OR_ITEM.get_type();

$cast(SEQ_OR_ITEM , create_item(w_, m_sequencer, `"SEQ_OR_ITEM`"));

end

if (!$cast(__seq,SEQ_OR_ITEM)) start_item(SEQ_OR_ITEM, -1);

if ((__seq == null || !__seq.do_not_randomize) && !SEQ_OR_ITEM.randomize()

with {}) begin

`uvm_warning("RNDFLD", "Randomization failed in uvm_do_with action")

end

if (!$cast(__seq,SEQ_OR_ITEM)) finish_item(SEQ_OR_ITEM, -1);

else __seq.start(m_sequencer, this, -1, 0);

end

`uvm_do(SEQ_OR_ITEM)

The OVM Sequencer Library

Page 15

class my_sequencer extends ovm_sequencer #(basic_transaction);

`ovm_sequencer_utils(my_sequencer)

function new(string name, ovm_component parent);

super.new(name,parent);

`ovm_update_sequence_lib_and_item(basic_transaction)

endfunction : new

endclass: my_sequencer

Populates sequence lib with simple, random, & exhaustive sequences

Deprecated in UVM

The OVM Sequence

Page 16

class my_sequence extends ovm_sequence #(instruction);

...

function new(string name = "");

super.new(name);

endfunction: new

task body;

...

endtask

`ovm_sequence_utils(my_sequence, my_sequencer)

endclass: my_sequence Deprecated in UVM

Selecting a Sequence in OVM

Page 17

set_config_string("*.m_seqr", "default_sequence", "my_sequence2");

set_config_string("*.m_seqr", "count", 10);

All firmly deprecated in UVM

Starting a Sequence in UVM

Page 18

sequence.start(sequencer, parent_sequence, priority);

Draft UVM Sequence Library

Page 19

class my_seq_lib extends uvm_sequence_library #(my_tx);

`uvm_object_utils(my_seq_lib)

`uvm_sequence_library_utils(my_seq_lib)

function new(string name = "");

super.new(name);

init_sequence_library();

endfunction

endclass
my_seq_lib lib = my_seq_lib::type_id::create();

lib.add_sequence(seq1::get_type());

lib.add_sequence(seq2::get_type());

lib.selection_mode = UVM_SEQ_LIB_RAND;

if (!lib.randomize()) ...

lib.start(m_env.m_seqr);

Other Detailed UVM Issues

Session 8: Hardcore UVM - I , Weds 10:30am – 12:00pm

The Finer Points of UVM: Tasting Tips for the Connoisseur (myself)

Beyond UVM: Creating Truly Reusable Protocol Layering (Janick)

Page 20

 Need for run-time phasing

 Confusion over when to raise/drop objections

 Register layer seems hard

 How to handle layered sequencers and agents

 Confusion over the semantics of lock/grab

Things Missing from UVM

Page 21

 Mixed language support (RTL)

 Mixed language support (TLM)

 Using UVM with analog/AMS

Migrating from OVM to UVM
A Case Study

Hassan Shehab
Technical Validation Lead

Intel Corporation

Page 2

Agenda

• We present a OVM compatibility layer on top of UVM
that allows the use of OVM based IPs on UVM source
code

• We look at the results of using the compatibility layer
by migrating a SoC consisting of 25+ OVM VIPs

Page 3

Introduction
• We present a case study of migrating a SoC environment fully developed

on OVM to UVM
– UVM recommends running a converter script on the source code to replace the ovm_*

symbols with uvm_* symbols
– This mandates either abandoning the OVM code base of the VIPs or maintaining two

repositories
– With heavy OVM in use, this is NOT practical as VIPs needs to go into SoCs with OVM

base and UVM base running in parallel.

• Enhanced the OVM compatibility layer developed originally by Mark
Glasser part of UVM EA
• https://forum.verificationacademy.com/forum/uvmovm-kit-downloads-and-user-

contributions-forum/kit-downloads-and-user-contributions/18304-uvm-ea-ovm-
compatibility-kit

• Enhanced the compatibility layer to work with UVM 1.1 release
• This layer sits on top of UVM and allows the migration to UVM w/o having to modify the

OVM IPs

Page 4

OVM Compatibility Layer
• The compatibility layer is done in a way that the existing OVM based

environment can use it just as an OVM version change
• The code below shows the ovm_pkg content which is derived from the UVM

code base (green), the compatibility layer code are split into the files (red) as
shown below

package ovm_pkg;
`include "ovm_macros.svh"
typedef class ovm_seq_item_pull_imp;
typedef class ovm_seq_item_pull_port;
`include "dpi/uvm_dpi.svh"
`include "base/base.svh"
`include "tlm1/uvm_tlm.svh"
`include "comps/comps.svh"
`include "seq/seq.svh"
`include "tlm2/tlm2.svh"
`include "reg/uvm_reg_model.svh"
`include "compatibility/ovm_compatibility.svh"
`include "compatibility/urm_message.sv"
`include "compatibility/legacy_compatibility.svh"

endpackage

Page 5

Mapping macros `uvm_* to `ovm_*
`include "uvm_macros.svh"

`define ovm_do_callbacks(CB,T,METHOD_CALL)
`uvm_do_callbacks(T,CB,METHOD_CALL)

`define ovm_do_callbacks_exit_on(CB,T,METHOD_CALL,VAL)
`uvm_do_callbacks_exit_on(T,CB,METHOD_CALL,VAL)

`define ovm_do_task_callbacks(CB,T,METHOD_CALL)
`uvm_do_task_callbacks(T,CB,METHOD_CALL)

`define ovm_do_obj_callbacks(CB,T,OBJ,METHOD_CALL)
`uvm_do_obj_callbacks(T,CB,OBJ,METHOD_CALL)

`define ovm_do_obj_callbacks_exit_on(CB,T,OBJ,METHOD_CALL,VAL)
`uvm_do_callbacks(T,CB,METHOD_CALL)

`define ovm_do_obj_task_callbacks(CB,T,OBJ,METHOD_CALL)
`uvm_do_obj_task_callbacks(T,CB,OBJ,METHOD_CALL)

`define ovm_do_ext_callbacks(CB,T,OBJ,METHOD_CALL)
`uvm_do_ext_callbacks(T,CB,OBJ,METHOD_CALL)

`define ovm_do_ext_callbacks_exit_on(CB,T,OBJ,METHOD_CALL,VAL)
`uvm_do_ext_callbacks_exit_on(T,CB,OBJ,METHOD_CALL,VAL)

`define ovm_do_ext_task_callbacks(CB,T,OBJ,METHOD_CALL)
`uvm_do_ext_task_callbacks(T,CB,OBJ,METHOD_CALL)

`define ovm_cb_trace(OBJ,CB,OPER)

`uvm_cb_trace(OBJ,CB,OPER)

Page 6

Mapping classes uvm_* to ovm_*
// Typedefs: UVM->OVM

//

// Non-parameterized UVM classes can be simply typedefed to corresponding

// OVM types.

//--

typedef uvm_void ovm_void;

typedef uvm_root ovm_root;

typedef uvm_factory ovm_factory;

typedef uvm_object ovm_object;

typedef uvm_transaction ovm_transaction;

typedef uvm_component ovm_component;

// Parameterized UVM classes cannot be simply typedefed to corresponding

// OVM types, have to extend from uvm equivalents and pass the right parameters

class ovm_analysis_port #(type T=int) extends uvm_analysis_port#(T);

function new(string name, uvm_component parent=null);

super.new(name, parent);

endfunction

endclass

Page 7

Mapping Enumerated Types

typedef uvm_active_passive_enum ovm_active_passive_enum;

uvm_active_passive_enum OVM_PASSIVE = UVM_PASSIVE;

uvm_active_passive_enum OVM_ACTIVE = UVM_ACTIVE;

typedef uvm_verbosity ovm_verbosity;

parameter uvm_verbosity OVM_NONE = UVM_NONE;

parameter uvm_verbosity OVM_LOW = UVM_LOW;

parameter uvm_verbosity OVM_MEDIUM = UVM_MEDIUM;

parameter uvm_verbosity OVM_HIGH = UVM_HIGH;

parameter uvm_verbosity OVM_FULL = UVM_FULL;

parameter uvm_verbosity OVM_DEBUG = UVM_DEBUG;

typedef uvm_severity ovm_severity;

uvm_severity OVM_INFO = UVM_INFO;

uvm_severity OVM_WARNING = UVM_WARNING;

uvm_severity OVM_ERROR = UVM_ERROR;

uvm_severity OVM_FATAL = UVM_FATAL;

…….

Page 8

UVM Source Code Change
• With the compatibility layer we can get majority of the OVM based

VIPs and environments to compile clean

• But there were still few UVM files we have to change to make it 100%
backward compatible to our OVM usage

1. uvm_final/src/base/uvm_component.svh
2. uvm_final/src/base/uvm_factory.svh
3. uvm_final/src/base/uvm_globals.svh
4. uvm_final/src/base/uvm_root.svh
5. uvm_final/src/comps/uvm_driver.svh
6. uvm_final/src/seq/uvm_sequencer.svh
7. uvm_final/src/seq/uvm_sequencer_param_base.svh
8. uvm_final/src/tlm1/sqr_connections.svh

Page 9

uvm_component

• Have to add pre_run() and call it from start_of_simulation phase
function void uvm_component::start_of_simulation(); `ifdef OVM pre_run(); `endif

return; endfunction

• Have to add the ovm_report_* functions into the uvm_component
`ifdef OVM
function void uvm_component::ovm_report_info(string id,

string message,

int verbosity = UVM_MEDIUM,

string filename = "",

int line = 0);

m_rh.report(UVM_INFO, get_full_name(), id, message, verbosity,

filename, line, this);

endfunction

`endif

Page 10

uvm_factory

• Have to add create_object() function into uvm_factory
`ifdef OVM

static function uvm_object create_object (string requested_type_name,

string parent_inst_path="",

string name="");

…

endfunction

`endif

• Have to add set_inst_override function into uvm_factory
`ifdef OVM

static function void set_inst_override (string full_inst_path,

string original_type_name,

string override_type_name);

…

endfunction

`endif

Page 11

uvm_globals and uvm_root

• Have to add ovm_test_top to uvm_globals.svh

`ifdef OVM

// This is set by run_test()

uvm_component ovm_test_top;

`endif

• Have to set ovm_test_top in uvm_root.svh

`ifdef OVM

ovm_test_top = uvm_test_top;

`endif

Page 12

Results

• Successfully migrated a OVM based SoC to UVM using the OVM
compatibility layer

- There were 25+ VIPs with complex bus interfaces like OCP/AHB/AXI and several I/Os
like PCIE/USB/SDIO etc.

- Have to add more code in the compatibility layer as few of the legacy IPs are even
dependent on AVM compatibility layer in OVM
- Ideally would be better to clean the IP source code to remove that legacy, but

preferred to add support in compatibility layer as proof-of-concept
- Managed to get all level-0 regressions containing 100+ tests passing

- Took ~3 person weeks to enhance the compatibility layer
- Took ~2 person weeks to run regressions and achieve same results as the reference

- Filed several Mantis items on UVM source code based on the issues/bugs observed
- e.g. print_topology() was crawling in UVM compared to OVM, simulator

enhancements were needed to match OVM performance

Page 13

Summary

• Ideally, it would be nice to start from a clean code and not create a compatibility layer

• In our case this is not possible because of:
• The amount of OVM code that we have which needs to be converted and tested
• The IPs that we get from all over the place internally and externally.

• It will takes us years to use the clean code approach. Huge impact on
• Our resources
• Execution schedule

• Having the compatibility layer enables a SoC project to move to UVM when they
decide and therefore without any effort or impact on execution schedule.

• This way a SoC can start developing new code in UVM and take opportunistic
approach in converting old code as intercepts permit.

Page 14

A Reusable Verification Testbench
Architecture Supporting C and UVM

Mixed Tests

Richard Tseng
Qualcomm, Boulder CO

Page 2

Agenda
Introduction

Testbench Features

Testbench Architecture Overview

Challenges & Solutions

Summary

Q&A

Page 3

Introduction
 UVM would be the ultimate methodology for design verification

- It’s the latest and greatest technology
- Strong EDA vendor supports
- VIPs and test sequences can be reusable

 In many applications, C was primarily used for testing legacy
designs
- Many scripts were written to support C tests
- Thousand lines of C code have been evolved from many product generations
- They are recognized as “golden regression suite”

 The goal is to build a UVM testbench
- To re-use verification components
- To re-use existing C and UVM test sequences

Page 4

Testbench Features

The UVM testbench architecture allows
us:
- To reuse C and UVM tests in various platforms
- To run C/UVM tests simultaneously
- To reuse UVM verification components
- To easily integrate UVM register layer

Page 5

Testbench Architecture Overview

Page 6

Challenges & Solutions

1. Creating UVM sequences with API Tasks
2. Reusing high-level C and UVM tests and

testbench components
3. Integrating UVM Register Layer

Page 7

Creating UVM sequences with API tasks

The C tests are usually programmed with API tasks

Typically in an UVM SVTB, UVM macros are used to
create a test sequence,
- ie, `uvm_do(),`uvm_do_with(), and `uvm_do_on_with()

UVM “do” macros don’t match the legacy C tests,
using the API task is more consistent

To reuse the C tests in an UVM testbench, C API
tasks need to be mapped to UVM “do” macros
- Constraints can be specified in API task arguments
- Default constraints can be specified within the API task

Page 8

UVM “do” macro V.S. API task

// axi_master_write(address, data)
axi_master_write(‘h1000, ‘h1234_5678);

`uvm_do_with(req, axi_mst_sqr,{req.addr == ‘h1000;
req_data == ‘h1234_5678;
req.cmd_type == AXI_WR_INC;
req.burst_length == 1;
req.burst_size == 4;
req.bready_delay == 1;
req.avalid_delay == 0;
…})

Transaction generated with “do” macro:

• Equivalent API task being called:

Page 9

Create Bus Transaction with API task
task axi_master_base_seq::axi_mst_write(input bit [31:0] addr,

input bit [31:0] data);

`uvm_create(req)

assert (req.randomize() with {
req.cmd_type == AXI_WR_INC;
req.address == addr;
req.data == data
req.burst_length == 1;
req.burst_size == 4;
req.bready_delay == 1;
req.avalid_delay == 0;

}) else begin
`uvm_fatal(…..)

end

`uvm_send(req)

endtask: axi_mst_write

Create a sequence item

Randomize with address,
data, and default
constraints

Send to sequencer

Page 10

Challenges & Solutions

1. Creating UVM sequences with API Tasks
2. Reusing high-level C and UVM tests and

testbench components
3. Integrating UVM Register Layer

Page 11

Map generic transactions to bus
interface specific API tasks
Portable tests are composed of generic API tasks

GPB (Generic Primary Bus) tasks
- Mapped to front-door register interface/primary interface

transactions:
- gpb_write() => axi_master_write()
- gpb_read() => axi_master_read()

GST (Generic Slave Transaction) tasks
- Mapped to slave device’s back-door transactions

- gst_bkdr_write() => axi_slave_bkdr_write()
- gst_bkdr_read() => axi_slave_bkdr_read()

Page 12

Map generic transactions to bus
interface specific API tasks (cont’d)

//bus interface specific sequence
task my_test_seq::body():

axi_master_write(reg1, data);
axi_master_read(reg2, data);
axi_master_nop(10); // idle for 10 clocks
axi_slave_bkdr_write(32’h0, 32’h1234_5678);
axi_slave_bkdr_read(32’h5555_aaaa, read_data);

endtask

// generic test sequence
task my_test_seq::body():

gpb_write(reg1, data);
gpb_read(reg2, data);
gpb_nop(10); // idle for 10 clocks
gst_bkdr_write(32’h0, 32’h1234_5678);
gst_bkdr_read(32’h5555_aaaa, read_data);

endtask

Page 13

Make C and UVM tests identical!
class sv_main_seq extends prj_base_seq;

task body();
bit[31:0] read_data;
`uvm_info(get_type_name(), “Test starts”, UVM_MEDIUM)
gpb_write(control_reg, 32’h0000_3204);
gpb_read(status_reg, read_data);
gst_bkdr_write(‘h400, 32’hA5);
gst_bkdr_read(‘h400, read_data);

endtask: body
endclass: sv_main_seq

void c_main_seq(void) {
unsigned int read_data; // 32 bit unsigned integer
uvm_info(__func__, “Test starts”, UVM_MEDIUM)
gpb_write(control_reg, 0x00003204);
gpb_read(status_reg, &read_data);
gst_bkdr_write(0x400, 0x000000A5);
gst_bkdr_read(0x400, &read_data);

…
}

Same UVM macro

Page 14

Using UVM reporting macros in C

UVM has a good reporting service
- Can specify the message verbosity level and
severity

- Generate messages which show where and when
they are called during simulation

Macros include `uvm_info(), `uvm_warning(),
`uvm_error(), `uvm_fatal()

Page 15

Implement UVM reporting macros in C

// In SV file, define uvm_rpt_info() function
function uvm_rpt_info(string id, string message,

int verbosity = UVM_MEDIUM);
`uvm_info(id, message, verbosity)

endfunction: uvm_rpt_info

// In C file, define verbosity level just as UVM definitions
#define UVM_LOW 100
#define UVM_MEDIUM 200
#define UVM_HIGH 300

// export uvm_rpt_info function
export "DPI-C" function uvm_rpt_info;

// define C macros
#define uvm_info(id, message, verbosity) \

uvm_rpt_info(id, message, verbosity);

Page 16

Reuse high-level VIPs

For different design, replace:
• UVM Agent Layer
• Translation sequences in

GTTL

Reusable!

Page 17

Challenges & Solutions

1. Creating UVM sequences with API Tasks
2. Reusing high-level C and UVM tests and

testbench components
3. Integrating UVM Register Layer

Page 18

Register models are auto generated by customized scripts
or EDA vendor provided tools

Explicit prediction mechanism is used in our example
 It’s recommended prediction mechanism

 Register model will be updated
- Register sequences issued from register sequencer (auto prediction)
- Bus transactions issued from all other bus agents (passive prediction)

Required additional verification components to be added,
so that the followings can be reused across different
platforms:
- Register sequences
- Predictor

UVM Register Layer Integration

Page 19

UVM Register Layer Integration

 AXI Master
Agent

gpb_sequencer

gpb2axi_mst_xl_vseq

gpb2axi_mst

Sequencer

Driver

UVM
Agent
Layer

Generic
Transaction
Translation

Layer

Test Sequences

gpb_monitor

Monitor

reg2gpb_predictor

reg2gpb_adapter

reg2bus()

UVM Reg Model

bus2reg()

UVM Register
Test Sequences

DUT DUT

UVM
Register

Layer

Project Virtual Sequencer
Project Virtual

Sequencer

Page 20

Summary
 In our applications, test sequences and the VIPs

were reused in multiple testbenches
- Modem core–level testbench

- GPB => QSB AXI master
- GST => QSB AXI slave

- Modem block-level testbenches
- GPB, GST => proprietary bus interfaces

- Modem emulation platform testbench
- GPB => AHB Master
- GST => Off-chip ZBT memory

- Regressions have been run with multiple simulators

The testbench architecture extends the reusability
beyond the scope of the UVM technology, and
across the C and SV language boundary

Page 21

UVM to the Rescue – Path to Robust
Verification

Asad Khan
Design Verification Lead
Texas Instruments, Inc.

Page 2

Agenda

Adopted Solutions and Roadblocks

UVM to the Rescue – Key Issues Addressed

Issues Detailed & UVM Solution

UVM in AMS Simulation

1

2

3

4

5

Conclusions6

Our Challenges Before…

Q/A7

Page 3

Our Challenges Before…

Page 4

Lack of block level to
top level test back

compatibility

Lack of constrained
random stimulus

Lack of provisioning
for verification IP (VIP)
support

Lack of functional
coverage driven
methodology

Lack structured
methodology and

aspects of reusability

Bulky in nature with directed test
overload – a management nightmare

Looks of several verification
environments patched together

Lack automated
checking aspects

Adopted Solutions and Roadblocks

Page 5

Lack of Phases and
Several Roadblocks in

Methodology

Simulator Dependent –
Compatibility issues with
Major Options

Needed Wrapper
Development to build a
Test Environment

Language Specific –
Needing Expertise

Lack of Base Class
Functions – A lot of

coding e.g. deep copy etc

VIP Solutions Lacking Standardization – Everyone
Seemed to have their own methodology

Lack of Full LRM
Support – Not all
features supported

Not Open Source –
Requiring Support,

Licenses and
Customizations

VERILOG Specman e VMM OVM

UVM to the Rescue – Key Issues Addressed

Page 6

Stimulus Control Issues Controlling multiple DUT Interfaces through Verification Components
resulted in complex and non reusable scheme due to Callbacks

End of Test Issues

Lack of Debug Messaging Support

Miscellaneous Testbench Issues

BFM/Monitor Reuse Issues

Waiting for pending items & drain time/delays caused end of test issues

Lack of or Non reusable custom environment printers during runtime
caused environment debug issues including complex simulation logs

Issues in writing more tasks to process channel data , repetitive and non-
reusable, lack of phasing options, and extensive coding of register models

Lack of schemes to reuse BFMs/Monitors from legacy test environments

Packet Class Issues

Inconsistency in Test Development

Issues due to rewrite of the entire task/function for enhancing it for
the newly added data member of the packet class – no automation

Issues e.g. errors, directed test overload due to lack of base test class

Packet Class Issues

Page 7

class ahb_master_trans extends vmm_data;
//DATA members
rand integer unsigned NumBytes = 0;
rand integer unsigned NumBeats = 1;
rand integer busy;
rand byte data [$];
rand bit [(`AHB_HADDR_WIDTH -1):0] address = 'h0;
…

function vmm_data copy(vmm_data to = null);
ahb_master_trans cpy;
super.copy_data(cpy);
cpy.NumBytes = this.NumBytes;
cpy.NumBeats = this.NumBeats;
cpy.busy = this.busy;
cpy.address = this.address;

for(int i = 0; i<this.NumBytes ; i++) begin
cpy.data[i] = this.data[i];

end
copy = cpy;

endfunction:copy
endclass

Example: Copy Function Issue

class ahb_master_trans extends uvm_transaction;
//DATA members
rand integer unsigned NumBytes = 0;
rand integer unsigned NumBeats = 1;
rand integer busy;
rand byte data [$];
rand bit [(`AHB_HADDR_WIDTH -1):0] address = 'h0;
…

`uvm_object_utils_begin(ahb_transfer)
`uvm_field_int(NumBytes , UVM_ALL)
`uvm_field_int(NumBeats , UVM_ALL)
//Similarly for other fields

…….
…….
`uvm_object_utils_end
….
endclass

UVM: Built-in Automation

From Issue
to Solution

We have faced issues in rewriting functions/tasks to override/cast
e.g. for copy, display and all others, however, using UVM
object_utils the data item automation is built in with field level flags

UVM_NOCOMPARE, UVM_NOPRINT etc
Data Item Automation in Place!!

End-of-Test Issues

Page 8

• Using several techniques in UVM we were
able to achieve uniform and highly
reusable end of test solution:

• Inside tests, sequences/virtual
sequences & uvm components:

• uvm_test_done.raise_objection
(this);

• uvm_test_done.drop_objection
(this);

• Inside particular phase
• phase.raise_objection(this);
• phase.drop_objection(this);

• Inside run_phase
• global_stop_request()

• For debug and status of objections:
• phase.phase_done.display_obj

ections();

UVM: uvm_test_done

From Issue
to Solution

We have always struggled with the issue on how to achieve “end of test”.
Logically when all activity completes should be the end of test, however,
checkers could still be checking or testbench components can be busy - how
do we reach true end-of-test?

• In cases where simulation had to be stopped based on
multiple interacting components, custom approaches
were used e.g. detecting occurrence of a condition
and using events – This was complex, cumbersome
and not reusable.

• Callbacks were used in VMM for specific end of test
conditions such as monitor observing pass/fail
condition. Several times debug time had to be put in
when the callback was missed from vmm_env::build(),
and this approach made env non-reusable since test
conditions changed per test scenarios.

• A crude “drain time” implementation was used to
terminate tests after a certain delay but this resulted in
different end of test times for sims at different
corners/conditions.

Problematic End-of-Test Approaches

RTL GATE AMS

Inconsistency in Test Development

Page 9

From Issue
to Solution

Tests created as program blocks always resulted in inconsistent DUT
initializations, redundant code with a test becoming a testbench, and in
some cases incorrect sequences because of multiple test writers using
independent approach – Test Maintenance Nightmare!

class test_base extends uvm_test;
top_env env;
`uvm_component_utils(test_base)
….
virtual function void end_of_elaboration_phase(uvm_phase phase);

dut_register_base = 12’hAAA;
endfunction:end_of_elaboration_phase
…..

endclass

class my_test extends test_base;
`uvm_component_utils(my_test)
….
task run_phase(uvm_phase phase);

send_link_pkt();
while (state!==0) begin // Wait For Complete

read32(dut_register_base), tmp_data[31:0]);
state = tmp_data[11:8];

end
$display(“Device has reached U0 successfully\n");
$display("Test Passed \n");

endtask:run_phase
endclass

UVM: uvm_test Class
program my_test(myInterface.TxRx my_host_if);
`include “my_vmm_include.sv"
vmm_log log = new(“My Env", "main-class");
my_env env;
……
initial begin
// I don’t know but I am configuring wrong
dut_register_base = 12’hBAD;
// I am sending good packets to wrong place
send_link_pkt();
while (state!==0) begin // Wait For Complete

read32(dut_register_base), tmp_data[31:0]);
state = tmp_data[11:8];

end
$display(“Device has reached U0 successfully\n");
$display("Test Passed \n");

end
endprogram

program block test issues

False Pass since “state” for this bad address is
non-zero by default where expectation was that

after sending link packet the correct address
would have become non zero

Stimulus Control Issues

Page 10

Issue at
Hand?

DUT with multiple interfaces needed interactive and interdependent
control of stimulus and response to incorporate feedback from the
simulation to direct the transaction generation. This was implemented
using Callbacks and became a critical issue from test to test.

• Four interfaces A, B, C and D that need to be
exercised.

• Interface A configures whereas B, C and D can
either be used to read or write.

• Interfaces B, C and D have to wait until
configuration is complete.

• Testing full and empty conditions involve
coordination between individual interfaces.

• Reconfiguration on A can happen anytime
making B, C and D read or write or vice versa.

Verification Challenge

Callback #6

Callback #5

Callback #4

Callback #3

Callback #2
Callback #1

Callbacks

Issue reads to I/F C
or D for DUT empty

Wait for DUT Full?

Stimulus Control Issues (Cont.)

Page 11

Interface
A

Interface
B

Interface
C

Interface
D

Configuration

Write

Read/Write

Read/Write

Interface A
Scenario

Generator and
Driver

Interface B
Scenario

Generator and
Driver

Interface C
Scenario

Generator and
Driver

Interface D
Scenario

Generator and
Driver

Issue writes to I/F B
for DUT full

Wait for DUT
empty?

Per configuration,
issue reads to C or D
to make DUT empty.

Wait for DUT full?

Based on configuration,
issue writes from C or D
to make the DUT full.

Configure DUT
through Interface A,
report done?

Configuration

Config: Wr Only

Config: Wr/Rd

Config: Wr/Rd

Example
Case 1

o Configure DUT using interface A so interface C and D can both Read & Write
o Configure Interface B to be Write only
o Using interface B, C and D make two iterations of DUT Full to Empty

Read from B to
make DUT empty

Wait for DUT full?

Per reconfiguration,
issue writes from D
to make DUT full.

Reconfigure from A
for B to read and D
write only, done?

Wait DUT empty?

Stimulus Control Issues (Cont.)

Page 12

Interface
A

Interface
B

Interface
C

Interface
D

Configuration

Write, Read

Write

Read, Write

Interface A
Scenario

Generator and
Driver

Interface B
Scenario

Generator and
Driver

Interface C
Scenario

Generator and
Driver

Interface D
Scenario

Generator and
Driver

Per configuration,
issue reads to D to
make DUT empty.

Wait for DUT full?

Based on configuration,
issue writes from C to
make DUT full.

Configure DUT
through Interface A,
report done?

Configuration

Config: Wr, Rd

Config: Wr

Config: Rd, Wr

Example
Case 2

o Configure DUT through interface A so that interface C is write, D
is read, and B is write only

o Reconfigure from A to make B read and D write only

Stimulus Control Issues (Cont.)

Page 13

From Issue
to Solution

Using virtual sequences and nested sequences in UVM we were able to
create a randomized approach to configure interface B, C and D as either
read, write or both and also do full and empty sequencing.

class intf_sequence extends virtual_sequence_base;
…..

`uvm_object_utils(intf_sequence)
….
virtual task body();

super.body();
…
`uvm_do(cfg_init) // Configure using intf A per cfg_init_intf_*
for(int i = 1;i<=iterations;i++)

`uvm_do_on_with(intf_seq, intf_sequencer, {
recfg == `INT.reconfigure;
tr1init == `INT.tr1init_order;

….})
endtask

endclass

constraint int_config::test_specific {
reconfigure == TRUE; iterations == 1;
tr1_init_order == C_FULL; tr1_final_order == C_EMPTY;
tr2_init_order == D_EMPTY; tr2_final_order == D_FULL;
tr3_init_order == B_FULL; tr3_final_order == B_EMPTY;
cfg_init_intf_B == RD_OR_WR; cfg_final_intf_B == RD_ONLY;
cfg_init_intf_C == RD_OR_WR; cfg_final_intf_C == RD_ONLY;
cfg_init_intf_D == RD_ONLY; cfg_final_intf_D == WR_ONLY; }

UVM: Nested and Virtual Sequences

program dut_test(..); //beginning of testcase
//callback for controlling and generating transfers
class write_read extends int_master_callback;

virtual task write(master_trans transaction = null);
begin

if(transaction.int == `INTF_A) begin
//wait for the configuration write to complete

end else begin
if(transaction.int == `INTF_B && env.DIR == 1'b0)

env.chan.put(wr_trans); end
endtask
virtual task read(master_trans transaction = null);

env.intf_cl_chan.put(rd_trans); endtask
endclass

initial begin
env.build();
env.intf_a_xactor.append_callback(w0_full_clbk);
env.intf_c_xactor.append_callback(w0_full_clbk);
env.intf_d_xactor.append_callback(w0_full_clbk);
env.run();

end endprogram //end of testcase

Example Code Snippet of Issue

BFM/Monitor Reuse Issues

Page 14

From Issue
to Solution

Our BFM/Monitor reuse from project to project has always resulted
in to a non-structured code with several redundancies. This always
involved re-structuring and recode on every project – time wasted!

BFM
(Customized For

Each Project)

TESTS
(Monitor Code

Scattered in Tests)

CFG

SEQUENCERDRIVER

PROJECT UVM ENV

MASTER_AGENT

ENV

CONFIG
CFGMONITOR

SLAVE_AGENT

!
Every project TB development
needed BFM code and monitor code
cleanup scattered in Tests (modules
or program blocks).

Plug-n-Play
TB for
Every

Project

Lack of Debug Messaging Support

Page 15

From Issue
to Solution

We have always faced issues because our test environment lacked
debug friendly features. Additional code had to be written to make logs
meaningful, print more info on the test environment components and
configurations.

Case-1:
if (condition_happens)

$display(“Print Details”);

`vmm_note(this.log,$psprintf(“ADDR: %h",address));

Case-2:
`define WARNING $write(“WRN: %t %m",$time); $display
`define ERROR $write("ERR: %t %m",$time); $display
`define DEBUG

if(debug) $write("DBG: %t %m",$time);
if(debug) $display

Case-3:
`ifdef DEBUG

$display(“Print Details”);
if($test$plusargs("DEBUG")) debug = 1;

Legacy TB Debug Support

Compile with +DEBUG

`vmm_fatal(this.log,"Data Mismatch");

`WARNING(“Issue a Warning");
`ERROR(“Issue an Error");
`DEBUG(“Debug Debug Debug");

function void end_of_elaboration_phase(uvm_phase phase);
env.assertions_inst.set_report_verbosity_level(UVM_MEDIUM);
env.scbd.set_report_verbosity_level(UVM_LOW);
env.monitor.set_report_verbosity_level(UVM_HIGH);

endfunction : end_of_elaboration_phase

`uvm_info(get_type_name(),$psprintf(“%d",val), UVM_LOW);
`uvm_info(get_type_name(),$sformatf(“%d",$time),UVM_NONE)
`uvm_info(“INFO1”,”Print This..”,UVM_HIGH)
`uvm_info(“INFO2”,”More Print..”,UVM_MEDIUM)

Compile with +UVM_VERBOSITY=UVM_FULL | UVM_LOW
| UVM_MEDIUM

`uvm_warning(“WARNING”, “Issue a Warning”)
`uvm_error(“ERROR”, string message)
`uvm_fatal(string id, string message)

UVM: Built-in Messaging

Lack of Debug Messaging Support (Cont.)

Page 16

Hierarchy Print &
Report Server

Using UVM messaging support we were able to print the TB hierarchy and
also customize the report server per our requirements.

class custom_report_server extends uvm_report_server;
virtual function string compose_message(uvm_severity severity,

string name, string id, string message, string filename, int line);
uvm_severity_type severity_type = uvm_severity_type'(severity);
if(severity_type == UVM_INFO)

return $psprintf("%0t | %s | %s", $time, id, message);
else

return $psprintf("%s | %0t | %s | %s | %s",
severity_type.name(), $time, name, id, message);

endfunction: compose_message
endclass: custom_report_server

function void start_of_simulation();
custom_report_server custom_server = new;
uvm_report_server::set_server(custom_server);

endfunction: start_of_simulation

uvm_report_server my_rpt;
virtual function void report_phase(uvm_phase phase);

int error_cnt, fatal_cnt, warning_cnt;
my_rpt = _global_reporter.get_report_server();
error_cnt = my_rpt.get_severity_count(UVM_ERROR);
fatal_cnt = my_rpt.get_severity_count(UVM_FATAL);
warning_cnt = my_rpt.get_severity_count(UVM_WARNING);
if(error_cnt != 0 || fatal_cnt != 0) begin

`uvm_info(get_type_name(), "\n SIM FAILED \n", UVM_NONE);
end else begin

`uvm_info(get_type_name(), "\n SIM PASSED \n",UVM_NONE);
end

endfunction: report_phase

task run_phase(uvm_phase phase);
printer.knobs.depth = 5;
`uvm_info("ENV_TOP",

$psprintf("\n\n\nPrinting the test topology:"), UVM_HIGH)
`uvm_info("ENV_TOP",

$psprintf("Printing...\n\n %s",this.sprint(printer)), UVM_HIGH)
endtask: run_phase

Global Control on TB
Hierarchy printing

Customizing report_server

SINK

Miscellaneous Testbench Issues

Page 17

Issue at
Hand?

We saw several problems in implementation using data channels where
additional code had to be written for data handling, and also in cases
where various simulation phases had to be handled.

VIP1

VIP3

VIP2

DUT

BEFORE AFTERSynchronizing Verification Components
Events were used to synch and control

Reset

Reset

Reset

Configure

Configure

Configure

Reset

Reset

Reset

Configure

Configure

Configure

Phasing support in UVM supported synchronization

SOURCE CHANNEL

BEFORE

Data Transactions Between Blocks
AFTER

SINKSOURCE

Needed to write tasks for data processing from vmm_channel TLMs were reusable, available functions, and simplified implementation

Comp Comp

Leaf
Port Export

Miscellaneous Testbench Issues (Cont.)

Page 18

Issue to
Solution

We were always manually writing our configuration register models that
was time consuming and full of errors. Using SPIRIT (IPXACT) scripts
we were able to automate our register model code generation for UVM.

perl gen_spirit_from_excel.pl project_reg_map.xls

java -jar $UVM_RGM_HOME/builder/ipxact/uvmrgm_ipxact2sv_parser.jar -input project_reg_map.spirit -ov -ve internal

BEFORE: A LOT OF MANUAL CODING!!!

AFTER

UVM Usage in AMS Simulations

Page 19

Before
We faced problems using constrained-random top-level testbench
in AMS environment because of compile problems and inconsistent
methodologies, and had to rely on non-standard and non-reusable
verification.

A
SCHEMATIC

A
SCHEMATIC

D

A
MODEL

D

A
MODEL

D
TEST1.vams

TEST2.vams

TESTn.vams

OUTPUT.log

Manual processing of logs for
errors, extraction, and visual

checking of waves –
Extremely inefficient and slow

process

Directed Test
Overload!

UVM Usage in AMS Simulations (Cont.)

Page 20

After
Using UVM infrastructure we were able to re-use the same
testbench and test suite that was created for RTL/GATE level also
for AMS simulation allowing us to run an end-to-end simulation with
packet traffic and protocol.

CFG

DRIVERSEQUENCER

TOP-LEVEL SIM ENV

MASTER_AGENT

ENV CONFIG

CFG
MONITOR

DIG &
ANALOG

SLAVE_AGENT

A
SCHEMATIC

A
SCHEMATIC

D

A
MODEL

D

A
MODEL

D

TESTS

Logic to Electrical

Electrical to Logic

SCOREBOARDS

ASSERTIONS
ANALOG NODES

GLUE LOGIC

Symbols in Top-level AMS Env
PARAMETER
GENERATOR

Technical Contributors
Paul Howard

Ravi Makam

 Jim Skidmore

Chuck Branch

Shyam Narayan

Arun Mohan

Pradeep Hanumansetty

Ronnie Koh

Page 21

Conclusions

 UVM cleanly addressed our critical issues that were causing
significant slowdown and down time due to code re-write

 UVM development goals align with our verification strategy/roadmap

 We did see some conversion effort in going from UVMEA1.0 to
UVM1.1 but this effort was minimal

 We found UVM helpful in following ways:
- Getting started with UVM was easy – lots of trainings and guidance
- We were able to develop complex test environments quickly
- We found that available VIPs following UVM make integration and usability

easier

 We are today using UVM actively in our Digital and Mixed signal
verification, and plan to use in Analog verification also

Page 22

OVM to UVM Migration
or There and Back Again, a Consultant’s Tale

Mark Litterick
Verification Consultant

Verilab GmbH
Munich, Germany

Page 2

Transition from OVM to UVM

Page 3

Born UVC

OVM

UVM

~Years-2 -1 Now +1

Born OVC
Projects

VI
P

O-to-U

U-to-O

uvm_reg

support ongoing OVM provide OVCs to UVM

Two Stage Evaluation

 Starting point
- clean OVM-2.1.2 OVCs
- no AVM or URM legacy
- different protocols but common style & development team
- => scripts are more effective, but less general purpose!

 First attempt – early UVM translation
- similar to Mentor Graphics’ Verification Academy flow
- goal : check for gotcha’s in code, proof of concept, project running in UVM

 Second attempt – late UVM translation
- optimized flow to do most effort in live OVM project
- automatic and repeatable translation for delivery to UVM

Page 4

Early UVM Translation

Audit
• audit OVM code

• remove deprecated OVM
• replace non-recommended OVM

O-to-U
• translate OVM to UVM

• execute ovm2uvm script
• update regression & test scripts

Convert

• convert to UVM style
• convert phases to UVM
• convert *stop to objections
• convert objection raise/drop to UVM
• convert set/get to config_db
• convert virtual interfaces to config_db

New

• use new UVM features
• remove deprecated UVM
• use improved UVM message macros
• use improved UVM command args
• use UVM register model

O
VM

U
VM

flow works!
since our VIP from
live OVM projectstoo many changes after translation

Automatic?
Find Fix

☐

Page 5

Push Back to OVM

 Features already in OVM-2.1.2 source:
- only objection handling used for end-of-test
- improved message macros used instead of methods
- using back-ported uvm_reg in OVM environments

 Key improvements that can be done in OVM:
- virtual interface configuration
- deprecate sequence utils and OVM sequence library

Page 6

Example: Interface Configuration

 Improve virtual interface configuration
- better interface container – specifically to help OVM to UVM translation
- container set and get methods similar to uvm_config_db

Page 7

AGENT

S

OVC

D VI
F

M VI
F

ENV

BASE-TEST

DUT

IN
TE

R
FA

C
E

TESTBENCH MODULE

config db

container::setcontainer::get
container

CIF

OVM

AGENT

S

UVC

D VI
F

M VI
F

ENV

BASE-TEST

DUT

IN
TE

R
FA

C
E

TESTBENCH MODULE

config db

CIF config_db::setconfig_db::get

UVM

// example set in OVM testbench module
my_container#(virtual my_if)::set("*", "cif", mif);

// example get in OVM agent or test class
if (!my_container#(virtual my_if)::get(this, "cif", vif))
`ovm_fatal("NOVIF","...")

// example set in UVM testbench module
uvm_config_db#(virtual my_if)::set(null, "*", "cif", mif);

// example get in UVM agent or test class
if (!uvm_config_db#(virtual my_if)::get(this, "", "cif", vif))
`uvm_fatal("NOVIF","...")

easy
translation

Example: Deprecated UVM

 Sequencer & sequence utils deprecated in UVM
- OVM sequence library not required in UVM or OVM
- automatic script & manual repair (for reactive slaves)

Page 8

class my_seq extends ovm_sequence #(my_seq_item);
`ovm_sequence_utils(my_seq, my_sequencer)

class my_sequencer extends ovm_sequencer #(my_seq_item);
`ovm_sequencer_utils(my_sequencer)
`ovm_update_sequence_lib_and_item(my_seq_item)

class my_env extends ovm_env;
set_config_int("*.my_sequencer", "count", 0);
set_config_string("*.my_sequencer","default_sequence","my_seq");

`ovm_do_on(my_seq, my_env.my_sequencer)
my_seq.start(my_env.my_sequencer);

class my_seq extends ovm_sequence #(my_seq_item);
`ovm_object_utils(my_seq)
`ovm_declare_p_sequencer(my_sequencer)

class my_sequencer extends ovm_sequencer #(my_seq_item);
`ovm_component_utils(my_sequencer)

class my_env extends ovm_env;

`ovm_do_on(my_seq, my_env.my_sequencer)
my_seq.start(my_env.my_sequencer);

can be done in OVM or UVM

do once in OVM

Late UVM Translation

Audit

• audit OVM code
• remove deprecated OVM
• delete non-recommended OVM
• convert *stop to objections
• convert virtual interfaces to container
• remove deprecated OVM seq* utils
• use improved OVM message macros
• use UVM register model (back-ported)

O-to-U
• translate OVM to UVM

• execute ovm2uvm script
• update regression & test scripts (once)

Convert

• convert to UVM style
• convert phases to UVM
• convert objection raise/drop to UVM
• convert set/get to config_db
• convert virtual interfaces to config_db

New • use new UVM features
• use improved UVM command args

O
VM

U
VM

done
once

done for
each VC
release

Automatic?
Find Fix

☐

Page 9

Final Translation Process

 Prepare source OVC for translation – once

 Continue development of OVC in live OVM project

 Release OVC versions to UVM when appropriate

 Automatic translate to UVM as part of VIP release

Audit
• audit OVM code

• execute audit script

O-to-U • translate OVM to UVM
• execute ovm2uvm script

Convert • convert to UVM style
• execute convert script

New • use new UVM features
• use improved UVM command args

O
VM

U
VM

Automatic?
Find Fix

Page 10

UVM to OVM Back-Porting

 Slim OVM to UVM conversion supports reverse translation

 Valid when UVM transition period expected to endure

 Translate new UVC to OVC for ongoing OVM projects

 UVM limitations (hard to back-port)
- avoid run-time phases
- avoid TLM-2.0

 Other considerations (easier to back-port)
- modified objection handling
- updated phase methods
- config_db changes
- command line processor

Page 11

still no industry consensus

use sequence-based phasing

localize TLM2 if really required

OK if no run-time phases

goal is not to cripple UVM
but enable reuse in OVM

normally OK

Conclusion

 Goal is move to UVM
- transition period could endure for some time
- considerable OVM legacy and many ongoing projects
- new UVM projects need OVC libraries
- ongoing OVM projects may need new UVCs

 Presented an overview of migration process
- prepare OVM for easier translation
- slim automatic translation process
- translation process is reversible

 Developed on family of OVCs, several projects
- applied to multiple projects @ different clients

Page 12

IBM Recommendations
for OVM UVM Migration

Wes Queen

Verification Manager, IBM

Page 2

Migrating from OVM to UVM

 Motivation: UVM API beginning to diverge from OVM as new features
are added to UVM

 Challenge: large code base in multiple projects

 General approach: Convert code base using scripts

Page 3

OVM Development Started in 2009

 Open source ran on multiple simulators

 Methodology met verification team requirements for reuse

 Initial development followed user guide

 OVM_RGM register package adopted

 OVM use rapidly spread to multiple groups worldwide

Page 4

Block Diagram HSS OVM Environment

Page 5

Monitor

DriverRegister Seq Seq Lib

Link Monitor

State
Monitor

DUT

Interface

Register OVC

Link Monitor
Link Monitor

Link Monitor

VSEQ_LIB

Config

State Config

Sub Config

Sub Config

I/O Control OVC

Monitor

DriverSeq Lib

Interface

Prepare Register Package

 Install updated parser from Cadence
- Allows for OVM_RGM, UVM_RGM, and UVM_REG generation
- OVM_RGM and UVM_RGM usage is identical
- UVM_REG targets the Accellera package

 Generate OVM and UVM register models
- Internal script used to generate file names and headers for new parser to match

previous parser version

 Install OVM_RGM 2.5 to align with new UVM parser
- Rerun OVM environment to be sure results match before proceeding

Page 6

Run UVM Conversion Script

 Download OVM-to-UVM conversion guide
- http://forums.accellera.org/files/file/71-appnote-migrating-from-ovm-to-uvm-10/

Posted by John Rose on May 8, 2011 if you are navigating to find it

 Install UVM conversion script
- Available within latest UVM kits on Accellera.org or within Cadence installation’

 Move any directories out of code tree that should not be converted
- OVM_RGM directory and/or legacy code

 Run conversion script

Page 7

Remove Deprecated Code and
Compile DPI

 Change any deprecated code which wouldn’t compile (OVM 1.0,
typically)
- Add_seq_cons_if – artifact code from OVM 1.0 that needs to be removed
- Review conversion guide for other deprecated code

 Compile uvm_dpi.cc (libdpi.so) in 32 bit or 64 bit
- New requirement for UVM

Page 8

Golden Test and Further Updates

 Run simulations to test conversion
- Include +UVM_USE_OVM_RUN_SEMANTIC in simulation command

 On-going clean-up
- Remove other deprecated OVM calls (mostly super.build or straight build calls)

 Adopt new UVM features
- Phases, sequences, UVM_REG, etc.

Page 9

Results

 Conversion process has been used successfully in multiple groups
- Current 4 projects have converted over the last year.

 Effort was relatively low
- Lowest risk is to do the conversion between projects
- Effort to convert took one day by single resource. 100K lines of code on single

project.

 Motivation to be on UVM is real
- New UVM features are valuable – UVM_REG, phasing, sequences, etc.
- New UVM features can impact backward compatibility

Page 10

FPGA chip verification using UVM

Charles Zhang
Verification Architect

Paradigm Works

Ravi Ram

Principal Verification
Engineer

Altera Corp

Page 2

Outline
Overview

- Verilog based verification environment
- Why UVM?
- New UVM based verification environment
- FPGA chip verification flow

Some of the challenges and solutions
- Generic programmable logic
- Legacy code integration.
- Programmable core & IO connection
- VIP integration(external and internal)

Page 3

Verilog based Verification Env
Traditional Verilog based verification environment

Multiple test benches for multiple modes of operation
- PP, PS, SPI, USERMODE, etc.

Recompilation for each test

No object oriented programming (reuse = copy and
change)

Maintainability and scalability are poor (large number of
tests, etc.)

Easier for designer to understand and modify

Page 4

Why UVM?
Supported and released by Accellera

Supported by all major EDA vendors

Object orient programming

Reusability (vertical and horizontal)

Well defined base class library

 Industry standard makes integration of third party or
home grown VIP easier

Good online documentation + UVM forums etc

Little bit harder for designer to understand

Page 5

UVM based Verification Env Overview

PP_PS Config UVC

Globa &PR Config UVC

Avalon
slave

vi

AS Config UVC vi

vi

Jtag UVC
vi

Control
Block

BFM1Avalon UVC
vi

CORE

IP

P
M
A

P
C
S

Memory VIP’s

IO

Memory Controller

IP

P
M
A

P
C
S

UVM VIP
Configurator

VIP1

IO

Core logic VC

vi

UVM VIP
Configurator

VIP1

int
er

fac
e

int
er

fac
e

Flash
memory
modelint

er
fac

e

interface

Clock UVC
vi

interface

interface interface

VIP2

VIP3

VIP4

VIP2

VIP3

BFM2

interface interface

BFM3

interface

Vermeer
model/
other

models int
er

fac
e

UVM REG UVC vi
SCOREBOARD1

SCOREBOARD2

CONFIG
DATABASE

Config
Data

Image

Page 6

UVM-based verification Env overview
Architected from scratch

One environment supports multiple operating mode
- PP, PS, SPI, USERMODE, etc.

Significantly reduced number of tests by inheritance,
configuration setting, etc
- The current UVM based tests is about 1/3 of the tests of Module

based ENV

Simulation performance improved by compile once and
run multiple tests

 Improved compile, run and regression flow
- With UVM, cmd line processor is built-in and free

Page 7

FPGA Verification Flow
 Configuration (Programming the FPGA).

- Support multiple programming interfaces
- Data compression and encryption
- Front door and back door loading configuration
- Verification goal: make sure the programmed image matches the

expected image

 User Mode (Running programmed user logic)
- Tests include testing all core logic blocks and all the IO systems
- Considerable effort is on creating configurable verification

environment
- Verification goal: verify all the core blocks and I/O systems to be

functioning and connected properly

Page 8

Generic programmable logic
 Programmable nature of FPGA calls for

programmable verification environment

 Core logic interface UVC is a highly
programmable verification component.
 Allows user to decide on which pins to

drive using UVM configuration

 The monitor extended by user to
implement any checking mechanism
using UVM factory override.

 Test based on sequences and
transactions without worry about pin
connection and toggling.

 Compile once and run all tests.

 Used by the software group to verify
real customer design.

Page 9

Legacy code integration

 Still need Verilog based verification environment to coexist with UVM
verification environment

 Interface file used as bridge between UVM verification environment and
module based verification environment

 Interfaces bound to its physical interface signals

 Virtual interface in UVC set by getting the instance from resource database

 Assertions implemented in interface binds to module or physical interface
signals

Page 10

Programmable core & IO connection
 FPGA core is programmable

 All hard IP is configurable

 Lots of different interfaces and VIPs

 Register access from reg UVC to configure FPGA
- Thousands of configurations in FPGA. UVM Reg model is already > 20G

for handling 30 to 40% of the FPGA configurations. So this is not scalable
and not practical to use

 Hundreds of configurable registers which UVM reg based testing
cannot handle
- Use home grown resource allocator plus configuration settings

 Register access from reg UVC to configure FPGA

 Seamless integration of resource allocator(internal tool) with internal
developed tools for unidirectional and bidirectional connections

Page 11

VIP integration
 Lots of VIPs to address hard IP in FPGA(1G/10G…, PCIe plus other

serial protocols, Altera Avalon VIP, different memory VIP for different
memory protocols)

 Flexibility to configure and select VIPs in UVM test

 Use constraints to select the connections and VIPs

 Use on the fly point-to-point connections to connect VIP to the fabric
- Turn off unused VIPs

 Same environment for integrating different vendor VIPs

 Environment setup for proliferation products for same FPGA family

 VIP interface easily portable to future FPGA families

Page 12

Avalon VIP Integration

 Integrate Avalon BFM in UVM environment

 Use of the existing bfm with a wrapper on top to make it a UVC

 VIP developed internally in Altera and is made available for use
by all groups

 The configuration object generated for each instance of the VIP
with a unique hdl Path which has a reference of the interface.

 The user provides the parameters for the VIP and the hdl Path in
his test-bench hierarchy

Page 13

Avalon Common module

Avalon Master interface

Avalon BFM

Avalon
UVC

Avalon Common module

Avalon Slave interface

Avalon BFMTo
External
DUT

To
External
DUT

Summary
 Altera’s first verification project adopting UVM

 Addressed critical challenges

 Programmable user logic and io

 Explosive configuration spaces, etc.

 Adopted pragmatic view of the methodology

 Re-architected the whole environment using UVM

 Reused and integrated both internal and external VIPs

 UVM provides ideal way to create configurable, reusable verification
components and environment

Page 14

	1_john
	2_Hassan
	3_Richard Tseng
	4_Asad Khan
	5_Mark Litterick
	6_Wes Queen
	7_Ravi Ram and Charles Zhang

